
Curve DAO

Curve DAO consists of multiple smart contracts connected by Aragon. Apart
from that, standard Aragon’s 1 token = 1 vote method is replaced with the
voting weight proportional to locktime, as will be described below.

Figure 1: Curve DAO contracts managed by Aragon

Curve DAO has a token CRV which is used for both governance and value
accrual.

Time-weighted voting. Vote-locked tokens in VotingEscrow

Instead of voting with token amount a, in Curve DAO tokens are lockable in a
VotingEscrow for a selectable locktime tl, where tl < tmax, and tmax = 4 years.
After locking, the time left to unlock is t ≤ tl. The voting weight is equal to:

w = a
t

tmax
.

In other words, the vote is both amount- and time-weighted, where the time
counted is how long the tokens cannot be moved in future.

The account which locks the tokens cannot be a smart contract (because can be
tradable and/or tokenized), unless it is one of whitelisted smart contracts (for
example, widely used multi-signature wallets).

1



VotingEscrow tries to resemble Aragon’s Minime token. Most importantly,
balanceOf() / balanceOfAt() and totalSupply() / totalSupplyAt() re-
turn the time-weighted voting weight w and the sum of all of those weights
W =

∑
wi respectively. Aragon can interface VotingEscrow as if it was a typical

governance token.

Figure 2: Voting weight of vote-locked tokens

Locks can be created with create_lock(), extended in time with
increase_unlock_time() or token amount with increase_amount(),
and withdraw() can remove tokens from the escrow when the lock is expired.

Implementation details

User voting power wi is linearly decreasing since the moment of lock. So does the
total voting power W . In order to avoid periodic check-ins, every time the user
deposits, or withdraws, or changes the locktime, we record user’s slope and bias
for the linear function wi(t) in user_point_history. We also change slope and
bias for the total voting power W (t) and record in point_history. In addition,
when user’s lock is scheduled to end, we schedule change of slopes of W (t) in
the future in slope_changes. Every change involves increasing the epoch by 1.

This way we don’t have to iterate over all users to figure out, how much should
W (t) change by, neither we require users to check in periodically. However, we
limit the end of user locks to times rounded off by whole weeks.

Slopes and biases change both when a user deposits and locks governance tokens,
and when the locktime expires. All the possible expiration times are rounded to
whole weeks to make number of reads from blockchain proportional to number
of missed weeks at most, not number of users (which can be potentially large).

Inflation schedule. ERC20CRV

Token ERC20CRV is an ERC20 token which allows a piecewise linear inflation
schedule. The inflation is dropping by 21/4 every year. Only Minter contract

2



can directly mint ERC20CRV, but only within the limits defined by inflation.

Each time the inflation changes, a new mining epoch starts.

Figure 3: CRV token inflation schedule

Initial supply of CRV is 1.273 billion tokens, which is 42% of the eventual
(t→∞) supply of ≈ 3.03 billion tokens. All of those initial tokens tokens are
gradually vested (with every block). The initial inflation rate which supports
the above inflation schedule is r = 22.0% (279.6 millions per year). All of the
inflation is distributed to users of Curve, according to measurements taken by
gauges. During the first year, the approximate inflow into circulating supply is 2
millions CRV per day, starting from 0.

System of Gauges. LiquidityGauge and GaugeController

In Curve, inflation is going towards users who use it. The usage is measured
with Gauges. Currently there is just LiquidityGauge which measures, how much
liquidity does the user provide. The same type of gauge can be used to measure
“liquidity” provided for insurance.

For LiquidityGauge to measure user liquidity over time, the user deposits his LP
tokens into the gauge using deposit() and can withdraw using withdraw().

Coin rates which the gauge is getting depends on current inflation rate, and gauge
type weights (which get voted on in Aragon). Each user gets inflation proportional
to his LP tokens locked. Additionally, the rewards could be boosted by up to
factor of 2.5 if user vote-locks tokens for Curve governance in VotingEscrow.

The user does not require to periodically check in. We describe how this is
achieved in technical details.

GaugeController keeps a list of Gauges and their types, with weights of each
gauge and type.

Gauges are per pool (each pool has an individual gauge).

3



LiquidityGauge implementation details

Suppose we have the inflation rate r changing with every epoch (1 year), gauge
weight wg and gauge type weight wt. Then, all the gauge handles the stream
of inflation with the rate r′ = wgwtr which it can update every time wg, wt, or
mining epoch changes.

In order to calculate user’s fair share of r′, we essentially need to calculate the
integral:

Iu =
∫

r′(t) bu(t)
S(t) dt,

where bu(t) is the balance supplied by user (measured in LP tokens) and S(t) is
total liquidity supplied by users, depending on the time t; the value Iu gives the
amount of tokens which user has to have minted to him. The user’s balance bu

changes every time user u makes a deposit or withdrawal, and S changes every
time any user makes a deposit or withdrawal (so S can change many times in
between two events for the user u). In LiquidityGauge contract, the vaule of Iu

is recorded in the integrate_fraction map, per-user.

In order to avoid all users to checkpoint periodically, we keep recording values
of the following integral (named integrate_inv_supply in the contract):

Iis(t) =
∫ t

0

r′(t)
S(t) dt.

The value of Iis is recorded at any point any user deposits or withdraws, as
well as every time the rate r′ changes (either due to weight change or change of
mining epoch).

When a user deposits or withdraws, the change in Iu can be calculated as the
current (before user’s action) value of Iis multiplied by the pre-action user’s
balance, and sumed up across user’s balances:

Iu(tk) =
∑

k

bu(tk) [Iis(tk)− Iis(tk−1)] .

The per-user integral is possible to repalce with this sum because bu(t) is
unchanged for all times between tk−1 and tk.

In order to incentivize users to participate in governance, and additionally create
stickiness for liquidity, we implement the following mechanism. User’s balance
counted in the LiquidityGauge gets boosted by users locking CRV tokens in
VotingEscrow, depending on their vote weight wi:

b∗u = min
(

0.4 bu + 0.6 S
wi

W
, bu

)
.

The value of wi is taken at the time user performs any action (deposit, withdrawal,
withdrawal of minted CRV tokens) and is applied until the next action this user
performs.

4



If no users vote-lock any CRV (or simply don’t have any), the inflation will
simply be distributed proportionally to the liquidity bu each one of them provided.
However, if a user stakes much enough CRV, he is able to boost his stream of
CRV by up to factor of 2.5 (reducing it slightly for all users who are not doing
that).

Implementation details are such that a user gets the boost actual at the time
of the last action or checkpoint. Since the voting power decreases with time,
it is favorable for users to apply a boost and do no further actions until they
vote-lock more tokens. However, once vote-lock expires, everyone can “kick” the
user by creating a checkpoint for that user and, essentially, resetting the user to
no boost if he/she has no voting power at that point already.

Finally, the gauge is supposed to not miss a full year of inflation (e.g. if there
were no interactions with the guage for the full year). If that ever happens, the
abandoned gauge gets less CRV.

Weight voting for gauges

Instead of simply voting for weight change in Aragon, users can allocate their
vote-locked tokens towards one or other Gauge (pool). That pool will be getting
a fraction of CRV tokens minted proportional to how much vote-locked tokens
are allocated to it. Eeach user with tokens in VotingEscrow can change his/her
preference at any time.

When a user applies a new weight vote, it gets applied only in the beginning of
the next whole week (this is done for scalability reasons). The weight vote for
the same gauge can be changed not more often than once in 10 days.

GaugeController implementation details

In order to implement weight voting, GaugeController has to include parameters
handling linear character of voting power each user has.

Similarly to how it is done in VotingEscrow, GaugeController records points
(bias+slope) per gauge in vote_points, scheduled changes in biases and slopes
for those points in vote_bias_changes and vote_slope_changes, with those
changes happening every round week, as well as current slopes for every user
per-gauge in vote_user_slopes, along with the power the user has used and
the time their vote-lock ends. The totals for slopes and biases for vote weight
per gauge, and sums of those per type, get scheduled / recorded for the next
week, as well as the points when voting power gets to 0 at lock expiration for
some of users.

When user changes his preferences, the change of the gauge weight is scheduled
for the next round week, not immediately. This is done in order to reduce the

5



number of blockchain reads which need to be performed by each user: that will
be proportional to the number of weeks since the last change instead of the
number of interactions other users did.

GaugeController is one of the most central pieces to the system, so it must
be controlled by the DAO. No centralized admin should control it, to not give
anyone powers to change type weights unilaterally.

Fee burner

Every pool allows the admin to collect fees using withdraw_admin_fees. Aragon
should be able to collect those fees to the admin account and use them to buy
and burn CRV on a free market once that free market exists. That should be
possible to be done by anyone without a vote.

Instead of burning, there could be different mechanisms working with the same
interface. In any case, this will not be immediately applied.

Gauges to rewards trading volume and governance votes

Both votes and trades are discrete events, so they can use the same sort of gauge.
The idea is that each event has a weight which exponentially decays over time.

It should be possible to call a gauge contract every time a user votes in Aragon.

6


